TomTom HD Map with RoadDNA

The TomTom HD Map allows automated vehicles to become location-aware, environment-aware and path-aware.

Maps for Humans vs Maps for Machines

Autonomous vehicles require maps that are significantly different from the maps that are used in today’s navigation systems. Drivers today mainly use digital maps to orientate themselves, to plan a journey and to navigate to their destination. However, as the driving task gradually shifts from the driver to in-vehicle automated systems, the role and scope of digital maps shifts accordingly. This means that the user of the map is no longer the driver, but rather a machine. As a result, a new generation of maps built purposely for machines is needed. These next generation maps for machines come in the form of a highly accurate and realistic representation of the road, generally referred to as high-definition (HD) maps.

TomTom HD Maps Make Automated Driving Safer and More Comfortable

The TomTom HD Map is a highly accurate and highly attributed representation of the road, including attributes such as lane models, traffic signs, road furniture and lane geometry, with accuracy down to a few centimeters. The TomTom HD Map allows automated vehicles to precisely locate themselves on the road, to build a detailed model of the surrounding environment working together with the vehicle sensors, and to plan their path to destination. The TomTom HD Map is not limited to autonomous driving, but can also be leveraged to fulfill a broad range of ADAS applications such as Predictive Powertrain Control, Highway Pilot, and Adaptive Cruise Control.

Enhancing TomTom HD Maps with Camera Images

TomTom is currently working on extracting map data from observations from a variety of sensors, amongst them also cameras. Through the acquisition of Autonomos, a Berlin-based autonomous driving start-up with heritage dating back to the DARPA Challenge, we significantly increased our expertise in computer vision and data extraction. Combining this know-how with our existing Artificial Intelligence expertise, we’re extracting map data – such as road geometry, traffic signs and landmarks – from camera images. Capturing this type of data is particularly relevant in order to update the HD Map, to ensure it matches reality quickly. This will enable scalable and efficient updates to the TomTom HD Map on a continuous basis. By exploring and testing innovative techniques to automate the update of HD Maps, TomTom is taking important steps towards setting a global standard for HD Maps.

TomTom HD Map Info Sheet:


HD Localisation for Automated Driving

A key challenge of autonomous driving is determining the exact location of a vehicle on the road. To operate safely and efficiently, it is key for an autonomous vehicle to be able to position itself on a specific lane with extreme accuracy. Today’s navigation systems use traditional GPS for localisation; however, traditional GPS fails to deliver the needed level of accuracy and robustness to enable autonomous driving. In fact, GPS is only accurate down to a few meters, meaning that a vehicle relying on GPS data for localisation would not always be able to determine what lane it is currently driving in. To address this challenge, the TomTom HD map includes the RoadDNA Suite, a range of map data layers that provide a reference for sensor observations so that the vehicle can be localized in the HD Map with high accuracy.

RoadDNA Suite

Automated vehicles today come equipped with a variety of sensors used for perceiving its surroundings and for localisation: cameras, radars, and LiDARs (3D laser scanners). This means that different map data is needed, depending on what sensors are used. It’s crucial for our RoadDNA suite to include multiple sets of data tailored to each type of sensor - delivered in a storage-friendly and processing-friendly format - and we’re expanding to do just that.

The TomTom RoadDNA suite includes:

  • Signs: a collection of traffic signs along the road, works best with camera sensors;
  • Roadside: a highly optimized LiDAR point cloud of roadside patterns, Roadside is the original RoadDNA - patented already in 2009 - and works best with LiDAR;
  • Poles: a collection of vertical poles along the side of the road, works with all sensors;
  • Markings: a model of individual lane markings along the roadway, works best with camera;
  • Radar: a layer made up of reflection points formed where radar signals hit, works best with radar (courtesy of our partnership with Bosch);
  • Reflectivity: localisation data that leverages the reflectivity of the road surface, works best with LiDAR.

By offering a broad suite of RoadDNA localisation data, we give our customers the freedom to use different sensors and different localisation techniques, achieving precise localisation in a storage-friendly and processing-friendly format. In addition, this approach means that customers can leverage and aggregate input from multiple vehicle sensors, increasing redundancy and leading to greater safety.

TomTom RoadDNA Info Sheet: